The greatest integer value of x

Find the greatest integer solution of the equation
https://www.linkedin.com/groups/8313943/8313943-6379265674996441091

$$
\lim _{n \rightarrow \infty} \frac{n^{x}-(n-1)^{x}}{(n+1)^{x-1}+(n+2)^{x-1}}=2018 .
$$

Solution by Arkady Alt, San Jose,California, USA.

I want to note that answer remains the same if in formulation of the problem remove word "integer" and herewith calculation of this limit for any real $x>0$ becomes more meaningful problem.Namely, since

$$
\frac{n^{x}-(n-1)^{x}}{(n+1)^{x-1}+(n+2)^{x-1}}=\frac{(n-1)^{x}}{(n+1)^{x}} \frac{(n+1) x \ln \left(\frac{n}{n-1}\right)}{1+\left(1+\frac{1}{n+1}\right)^{x-1}} \cdot \frac{e^{x \ln \left(\frac{n}{n-1}\right)-1}}{x \ln \left(\frac{n}{n-1}\right)}
$$

and $\lim _{n \rightarrow \infty} \frac{e^{x \ln \left(\frac{n}{n-1}\right)-1}}{x \ln \left(\frac{n}{n-1}\right)}=1, \lim _{n \rightarrow \infty}\left(1+\left(1+\frac{1}{n+1}\right)^{x-1}\right)=2, \lim _{n \rightarrow \infty} \frac{(n-1)^{x}}{(n+1)^{x}}=1$,
$\lim _{n \rightarrow \infty}(n+1) x \ln \left(\frac{n}{n-1}\right)=x \ln \left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n-1}\right)^{n+1}\right)=x$ then
$\lim _{n \rightarrow \infty} \frac{n^{x}-(n-1)^{x}}{(n+1)^{x-1}+(n+2)^{x-1}}=\frac{x}{2}$ and, therefore, $x=4036$.

